Effects of age and exercise on inflammatory cytokines, HSP70 and HSP90 gene expression and protein content in Standardbred horses
Abstract: We hypothesised that the cortisol response to acute exercise, markers of oxidative stress, expression of inflammatory cytokines, heat shock protein (HSP)70 and HSP90 expression in whole blood and skeletal muscle, and HSP70 and HSP90 protein concentrations in skeletal muscle are altered by age and in response to acute submaximal exercise in horses. Young (n=6; 5.5±2.8 year) and aged (n=6; 22.6±2.25 year) unconditioned Standardbred mares underwent an acute submaximal exercise test. Blood samples were collected and analysed for plasma cortisol and malondialdehyde (MDA) concentrations, and for cytokine and HSP gene expression pre- and post-exercise. Gluteus medius biopsies were obtained for analysis of cytokine and HSP gene expression pre- and at 0, 4, 24 and 48 h post-exercise. Data were analysed for main effects using a two-way ANOVA for repeated measures. Post-hoc comparisons of means were conducted using Student-Neuman-Keuls for pair-wise multiple comparisons where appropriate. Acute submaximal exercise increased plasma cortisol concentration in both young and aged mares, and the duration of the post-exercise rise in cortisol was altered in aged horses. Plasma MDA concentration and expression of tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 were unchanged in blood and muscle. Exercise increased IL-1β expression in whole blood of young and aged mares, with young mares having greater exercise-induced expression at 2 (P<0.001) and 4 (P=0.019) h post-exercise. Both young and aged horses had increased HSP70 expression in whole blood following acute exercise, with young horses exhibiting 3-fold greater HSP70 expression than aged mares at 2 h post-exercise. HSP90 expression in whole blood following exercise was increased only in young horses. Both young and aged horses had increased HSP90 expression in skeletal muscle following exercise, but there was no difference due to age. However, the timing of HSP70 expression was different between young and aged horses. The age-related changes in cortisol and IL-1β expression following acute submaximal exercise can have implications for energy homeostasis and the adaption to such disturbances at a cellular and whole animal level. Quantification of HSP expression in whole blood may be a useful biomarker, with implications for cellular adaptation and survival in aged horses.
For the full paper, please contact Dr. Karyn Malinowski at : karynmal@njaes.rutgers.edu